
Makalah IF2211 Strategi Algoritma, Semester II Tahun 2024/2025

Implementation of Backtracking Algorithm to Solve

the Sootopolis City Gym Puzzle in Pokémon Emerald

Jethro Jens Norbert Simatupang - 13523081

Program Studi Teknik Informatika

Sekolah Teknik Elektro dan Informatika

Institut Teknologi Bandung, Jalan Ganesha 10 Bandung

E-mail: jethrojsimatupang@gmail.com , 13523081@std.stei.itb.ac.id

Abstract—The Sootopolis City Gym Puzzle in Pokémon

Emerald challenges players to step on all the ice tiles on a stage

without stepping on any tile more than once, in order to unlock

the path to the Gym Leader. This problem can be modeled as a

pathfinding task on a graph and solved using a backtracking

algorithm. This paper implements the algorithm recursively by

exploring all possible paths and pruning when rules are violated.

The implementation results show that backtracking is effective in

finding the solutions, although complexity increases with stage

size. This approach proves to be relevant for solving logic-based

challenges in the context of video games.

Keywords—Solution Space Exploration, Backtracking

Algorithm, Constraint Satisfaction, Sootopolis City Gym Puzzle

I. INTRODUCTION

Video games are electronic games that involve interaction

between users and hardware through input devices to produce

visual and audio output. Modern video games often not only

offer entertainment, but also also hone the logical and strategic

thinking skills of their players through various challenges. One

such challenge commonly found in video games is a puzzle

that players must solve before progressing further. One video

game that features a variety of engaging puzzles is Pokémon

Emerald, a popular RPG released by Nintendo in 2004.

In Pokémon Emerald, players are faced with various logic-

based challenges spread across various Gyms. One of the

more interesting challenges is the Sootopolis City Gym

Puzzle, in which players must traverse a series of ice tiles, in

order to make their way to the Gym leader. While the puzzle

may appear simple at first, it becomes increasingly

challenging as the size and complexity of the tile layout grow.

This challenge resembles classic problems in computer

science, particularly in the domains of pathfinding and

solution space exploration. The problem can be represented as

a graph, with each tile as a node and movements between tiles

as edges. This modeling opens up opportunities to apply

systematic search algorithms to find an optimal solution.

In solving solution finding problems, the backtracking

algorithm is a suitable choice, especially for problems with

multiple constraints that require trial and error, such as the

Sootopolis City Gym Puzzle. The backtracking algorithm

builds solutions by recursively exploring all possible paths,

with the ability to backtrack when necessary. When a path

being constructed proves not to lead to a valid solution or

violates the bounding function, the algorithm backtracks and

tries an alternative path, known as pruning. This ability to

prune invalid paths makes the backtracking algorithm

powerful and effective for finding solutions for solution

finding problems with bounding functions and large solution

spaces.

This paper implements the backtracking algorithm to solve

the Sootopolis City Gym Puzzle in the game Pokémon

Emerald. The main focus lies in how the problem is modeled,

how the algorithm is applied efficiently, and how it performs

across various puzzle configurations. This paper aims to

demonstrate the potential of the backtracking approach in

solving logic-based challenges within the context of video

games, as well as to provide insight into the practical

application of the backtracking algorithm in real-world

problem solving.

II. THEORITICAL BASIS

A. Solution Space Exploration

In computer science, many problems can be represented as
a process of searching for a solution within a state space. This
space contains a set of all possible state that can be reached
from an initial state through a series of actions or steps. Each
possible state is typically represented as a node in a tree, and
the steps taken to reach those states are represented as edges.
Solution space exploration is the systematic process of finding
one or more solutions that meet specific criteria or constraints
within that space.

Figure 1. Solution space exploration illustration

Source: https://informatika.stei.itb.ac.id/~rinaldi.munir/Stmik/2024-
2025/13-BFS-DFS-(2025)-Bagian1.pdf

mailto:jethrojsimatupang@gmail.com
mailto:13523081@std.stei.itb.ac.id
https://informatika.stei.itb.ac.id/~rinaldi.munir/Stmik/2024-2025/13-BFS-DFS-(2025)-Bagian1.pdf
https://informatika.stei.itb.ac.id/~rinaldi.munir/Stmik/2024-2025/13-BFS-DFS-(2025)-Bagian1.pdf

Makalah IF2211 Strategi Algoritma, Semester II Tahun 2024/2025

One fundamental approach to solving problems in a
solution space is exhaustive search. This method works by
systematically trying all possible solutions. While exhaustive
search guarantees that a solution will be found if one exists, it
is inefficient for large solution spaces due to its exponential
time and space complexity.

Several commonly used search algorithms in solution space
exploration include Depth-First Search (DFS), Breadth-First
Search (BFS), and Brute Force Search. These algorithms work
by exhaustively evaluating all possible steps, but they differ in
their traversal order and efficiency. For example, DFS explores
a path deeply until it reaches the maximum depth before
backtracking, while BFS explores all paths at the same level
before moving to deeper levels. Brute force, on the other hand,
evaluates all possibilities without employing any strategy to
reduce the search space.

B. Backtracking Algorithm

The backtracking algorithm is one of the systematic search
techniques suitable for solving problems that have many
possible solutions, but are constrained by specific rules.
Backtracking is an improvement of exhaustive search. Unlike
exhaustive search, which explores all possible solutions,
backtracking only explores choices that lead toward a solution.
Choices that do not lead to a solution are discarded by pruning
nodes that do not contribute to a valid outcome.

To solve a problem using the backtracking algorithm, the
problem needs to be modeled by considering several key
properties of the backtracking approach:

1. Solution Space
All possible solutions to the problem.

2. Node (State)
A node or state represents a partial solution's current
condition. Each node stores the current status during the
search process.

3. Edge
An edge is a step or action that moves the algorithm
from one node to another. For example, by selecting a
value to add to the partial solution. In graph form, it
represents an edge connecting state A to state B.

4. Root Node and Goal Node
The root node is the starting point of the search,
typically representing an empty or partially filled
solution. The goal node is a leaf node that represents a
complete and valid solution.

5. Problom Solution
The solution is expressed as an n-tuple vector: X = (x₁,
x₂, ..., xₙ), where xᵢ ∈ Sᵢ. Generally, S₁ = S₂ = ... = Sₙ.

6. Generator Function
The generator function is expressed as T(). T(x₁, x₂, ...,
xₖ₋₁) generates a value for xₖ, which is a component of
the solution vector.

7. Bounding Function
Expressed as a predicate B(x₁, x₂, ..., xₖ) that returns true
or false. B returns true if (x₁, x₂, ..., xₖ) leads to a
solution, meaning it does not violate any constraints. If
true, the generation of a value for xₖ₊₁ continues; if false,
then (x₁, x₂, ..., xₖ) is discarded.

The principle of solution search using the backtracking
algorithm is carried out by generating state nodes that form a
path from the root to the leaves in a search tree. The generation

of these nodes follows a depth-first order (DFS). Nodes that
have been generated are called live nodes, while the live node
currently being expanded is referred to as the E-node (expand
node). Each time an E-node is expanded, the path it forms
becomes longer. However, if the path does not lead to a
solution, the E-node is “terminated” and becomes a dead node
by applying a bounding function. When a node becomes dead,
its child nodes are implicitly pruned as well.

If the path being formed ends in a dead node, the search
process will backtrack to a node at the previous level and
attempt to generate another child node. This new node then
becomes the new E-node. The search process stops once a goal
node has been found.

Figure 2. Backtracking illustration

Source: https://informatika.stei.itb.ac.id/~rinaldi.munir/Stmik/2024-
2025/15-Algoritma-backtracking-(2025)-Bagian1.pdf

C. Pokémon Emerald

Pokémon Emerald is one of the games in the Pokémon
series developed by Game Freak and published by Nintendo
for the Game Boy Advance console. This game belongs to the
role-playing game (RPG) genre, where players take on the role
of a Pokémon Trainer exploring the Hoenn region to catch
Pokémon, battle other trainers, and overcome various
challenges. The game not only relies on strategy in battles but
also incorporates puzzle and problem-solving elements that
require logic and planning.

Figure 3. North American box art for Pokémon Emerald, depicting

the Legendary Pokémon Rayquaza
Source: https://en.wikipedia.org/wiki/Pok%C3%A9mon_Emerald

One important aspect of Pokémon Emerald is the challenge
posed by the eight Gym Leaders scattered throughout the
Hoenn region. Before being allowed to challenge a Gym
Leader, players are required to complete a puzzle or obstacle,
which is often designed as an integral part of the Gym itself
and serves as the path leading to the Gym Leader.

https://informatika.stei.itb.ac.id/~rinaldi.munir/Stmik/2024-2025/15-Algoritma-backtracking-(2025)-Bagian1.pdf
https://informatika.stei.itb.ac.id/~rinaldi.munir/Stmik/2024-2025/15-Algoritma-backtracking-(2025)-Bagian1.pdf
https://en.wikipedia.org/wiki/Pok%C3%A9mon_Emerald

Makalah IF2211 Strategi Algoritma, Semester II Tahun 2024/2025

D. Sootopolis City Gym Puzzle

One of the most intriguing puzzles in Pokémon Emerald is
the Sootopolis City Gym Puzzle, which challenges players to
walk across all of the ice tiles present without stepping on the
same tile more than once. Each ice tile cracks the first time it is
stepped on, and if stepped on again, it shatters, causing the
player to fall to the lower floor and start over. Additionally, the
puzzle contains rocks that cannot be crossed, acting as
obstacles and adding difficulty in determining the correct path.

Figure 4. Sootopolis City Gym in Pokémon Emerald

Source: https://pokemon.fandom.com/wiki/Sootopolis_City_Gym

This puzzle consists of three separate stages at three
different floors, each connected by a staircase. At the
beginning, the staircase to the next floor is closed and players
begin on the first tile in front of the previous staircase. The
objective of each stage is to step on all the tiles in the correct
sequence, ending with the final step on the tile directly in front
of the staircase to the next floor. Only by fulfilling this
condition will the stairs to the next stage unlock and allow the
player to climb up the ladder without the need to step on
additional tiles. This puzzle exhibits the characteristics of a
solution space exploration problem, making it well-suited for
analysis and resolution using algorithmic approaches such as
backtracking to find a path that satisfies all given constraints.

III. IMPLEMENTATION

A. Problem Modeling

The Sootopolis City Gym Puzzle can be modeled as a two-
dimensional board in the form of a matrix, where each cell
represents a specific condition:

• 'S' marks the player's starting point, which is the first

tile in front of the staircase,

• 'G' marks the goal point, which is the tile directly

beneath the staircase,

• '.' represents a tile that can be stepped on once,

• 'X' represents a rock that cannot be crossed.

This problem can be formulated as a pathfinding task from

'S' to 'G' under the following conditions:

1. All walkable tiles ('.' and 'G') must be visited exactly

once,

2. The player must end the path at the 'G' position,

3. The player must not step on any tile more than once.

This problem falls into the category of exponential solution

space exploration, making a brute-force approach highly

inefficient. Therefore, a backtracking algorithm is used, along

with a pruning strategy to avoid exploring invalid paths.

The definitions of the backtracking algorithm properties

for this problem are as follows:

1. Solution Space

The solution space consists of all possible paths where

no tile is stepped on more than once.

2. Node (State)

Each state is represented by a matrix coordinate,

consistent with the puzzle's modeling as a matrix-based

board.

3. Edge

Edges in this problem model represent the steps taken,

which can be in four directions: west, north, east, and

south.

4. Root Node and Goal Node

The root node is represented by the starting point of the

search, marked by the position 'S', while the goal node

is represented by the endpoint of the search, marked by

the position 'G'.

5. Problem Solution

The problem solution is represented as a vector of step

sequences X = (x₁, x₂, ..., xₙ), where each xᵢ is a

coordinate (r, c) of a tile visited. Each element in this

vector represents a single step in the chosen path, and

its values are taken from the domain Sᵢ, which consists

of valid neighboring cells that can be visited from the

previous step.

6. Generator Function

The generator function takes the last position from the

partial solution vector and checks four possible

directions of exploration (west, north, east, and south).

Only cells that have not been visited, do not contain 'X',

and are within the grid boundaries will be generated as

candidates for the next step.

7. Bounding Function

The bounding function is used to decide whether the

partial solution is still valid and should be continued, or

whether it should be pruned. This function returns false

if the partial solution meets any of the following

conditions:

(a) The player steps on the 'G' tile before all required

tiles have been visited,

https://pokemon.fandom.com/wiki/Sootopolis_City_Gym

Makalah IF2211 Strategi Algoritma, Semester II Tahun 2024/2025

def solve_gym_puzzle(grid):

 rows = len(grid)

 cols = len(grid[0]) if rows > 0 else 0

 # Temukan posisi awal (S) dan hitung total titik yang

harus dikunjungi

 start_pos = None

 target_positions = set()

 for i in range(rows):

 for j in range(cols):

 if grid[i][j] == 'S':

 start_pos = (i, j)

 if grid[i][j] == '.' or grid[i][j] == 'G':

 target_positions.add((i, j))

 if not start_pos:

 return None, 0

 target_count = len(target_positions)

 # Arah: kiri, kanan, atas, bawah

 directions = [(0, -1), (0, 1), (-1, 0), (1, 0)]

 best_path = None

 nodes_visited = 0

 def is_valid(x, y, visited):

 return 0 <= x < rows and 0 <= y < cols and grid[x][y]

!= 'X' and not visited[x][y]

 def can_reach_all_targets(x, y, visited,

remaining_targets):

 # Buat salinan visited untuk flood fill

 visited_copy = [row[:] for row in visited]

 queue = [(x, y)]

 visited_copy[x][y] = True

 found_targets = set()

 while queue:

 cx, cy = queue.pop(0)

 if (cx, cy) in remaining_targets:

 found_targets.add((cx, cy))

 if len(found_targets) == len(remaining_targets):

 return True

 for dx, dy in directions:

 nx, ny = cx + dx, cy + dy

 if is_valid(nx, ny, visited_copy):

 visited_copy[nx][ny] = True

 queue.append((nx, ny))

 return len(found_targets) == len(remaining_targets)

 def backtrack(x, y, visited, path, remaining_targets):

 nonlocal best_path, nodes_visited

 nodes_visited += 1

 current_char = grid[x][y]

 new_remaining = remaining_targets.copy()

 # Jika menginjak target, hapus dari remaining_targets

 if (x, y) in new_remaining:

 new_remaining.remove((x, y))

 # Basis: mencapai G dan semua target terpenuhi

 if current_char == 'G' and not new_remaining:

 if best_path is None or len(path) + 1 <

len(best_path):

 best_path = path + [(x, y)]

 return

 # Prune jika tidak semua target bisa dicapai dari

posisi ini

 if not can_reach_all_targets(x, y, visited,

new_remaining):

 return

 # Tandai sudah dikunjungi

 visited[x][y] = True

 # Rekursi: coba semua arah

 for dx, dy in directions:

 nx, ny = x + dx, y + dy

 if is_valid(nx, ny, visited):

 backtrack(nx, ny, [row[:] for row in visited],

path + [(x, y)], new_remaining)

 # Unmark visited untuk backtracking

 visited[x][y] = False

 # Mulai backtracking dari posisi awal

 initial_visited = [[False for _ in range(cols)] for _ in

range(rows)]

 backtrack(start_pos[0], start_pos[1], initial_visited,

[], target_positions)

 return best_path, nodes_visited

def print_solution(grid, path, nodes_visited):

 if not path:

 print("Tidak ada solusi ditemukan")

 print(f"Jumlah node yang dikunjungi: {nodes_visited}")

 return

 solution_grid = [list(row) for row in grid] # Buat

salinan grid

 for step, (x, y) in enumerate(path[1:], 1):

 if solution_grid[x][y] not in ['S', 'G']:

 # Format step dengan dua digit, jika step > 99 maka

akan menunjukkan tiga digit

 solution_grid[x][y] = f"{step:02d}"

 for row in solution_grid:

 print(' '.join(f"{str(c):>2}" for c in row))

 print(f"Jumlah node yang dikunjungi: {nodes_visited}")

 print()

]

(b) The player is trapped between 'X' tiles and cannot

move before reaching the goal 'G',

(c) There is a '.' tile that becomes unreachable (e.g.,

surrounded by 'X' tiles, making it impossible for the

player to step on it).

This problem also has a deterministic nature and doesn't

involve random elements, meaning the solution path is entirely

determined by the initial stage/board conditions and

movement rules. This allows for systematic exploration of the

solution space and consistent replication of results.

Furthermore, because all information is available from the

outset, no learning or adaptation process is required during the

solution search, which makes search-based approaches like

backtracking highly suitable for solving this type of puzzle.

B. Algorithm Implementation

To solve the Sootopolis City Gym Puzzle challenge, the

backtracking algorithm is implemented as a recursive function

that explores all possible paths from the starting position to the

goal, ensuring that all walkable tiles are visited exactly once.

The solution is constructed using recursion and pruning to

avoid searching paths that do not meet the criteria. The main

function, solve_gym_puzzle, is responsible for processing

the puzzle matrix, determining the starting and goal positions,

and initializing the solution search using the backtracking

technique.

The implementation above begins by reading the game

layout/board and identifying the starting position ('S') as well

as all the target tiles that must be visited (stepped), i.e. all

Makalah IF2211 Strategi Algoritma, Semester II Tahun 2024/2025

Puzzle 1

puzzle1 = [

 ['X', 'G', '.'],

 ['.', '.', '.'],

 ['.', 'S', 'X']

]

print("Solusi Puzzle 1:")

path1, nodes1 = solve_gym_puzzle(puzzle1)

print_solution(puzzle1, path1, nodes1)

Puzzle 2

puzzle2 = [

 ['.', '.', '.', 'G', '.', '.', '.'],

 ['.', 'X', '.', '.', '.', 'X', '.'],

 ['.', '.', '.', 'S', '.', '.', '.']

]

print("Solusi Puzzle 2:")

path2, nodes2 = solve_gym_puzzle(puzzle2)

print_solution(puzzle2, path2, nodes2)

Puzzle 3

puzzle3 = [

 ['.', '.', 'X', '.', '.', 'G', '.', '.', '.', '.', '.'],

 ['.', '.', '.', '.', '.', '.', 'X', '.', '.', 'X', '.'],

 ['.', 'X', '.', '.', 'X', '.', '.', '.', '.', '.', '.'],

 ['.', '.', '.', '.', '.', 'S', '.', '.', 'X', '.', '.']

]

print("Solusi Puzzle 3:")

path3, nodes3 = solve_gym_puzzle(puzzle3)

print_solution(puzzle3, path3, nodes3)

regular tiles ('.') and the final goal ('G'). The algorithm then

maps the starting position and collects all target points into a

set called target_positions.

The helper function is_valid is crucial for navigating the

puzzle. It ensures that a cell can be stepped on by checking

two key conditions: first, that it is not a rock (represented by

grid[x][y] != 'X'), and second, that it has not already

been visited in the current path (not visited[x][y]). This

strict validation helps to immediately rule out impossible

moves and prevent redundant exploration, contributing to the

overall efficiency of the backtracking process.

To avoid exploring paths that are clearly invalid from the

start, the bounding function is applied strictly. One such

boundinf function is that the player must not reach the 'G' tile

before all targets are visited (the backtrack function only

accepts a path to 'G' if remaining_targets is empty). This

prevents invalid solutions as described in the bounding

function (a).

Additionally, bounding function (b) and (c) are enforced

through a flood fill mechanism implemented in the

can_reach_all_targets function. This function verifies

whether all remaining targets are still reachable from the

current position. If not, the path is immediately terminated

before proceeding to the next recursive step. This prevents

scenarios in which the player becomes trapped in a closed-off

area (e.g., surrounded by 'X') or when a '.' tile becomes

unreachable due to a previous wrong move, as outlined in the

bounding function (b) and (c). Such pruning is crucial for

improving efficiency and avoiding exploration of branches

that can never lead to a valid solution.

During the exploration process, the backtrack function

attempts all movement directions (left, up, right, down) from

the current position. Each step is executed recursively using a

copy of the current visitation status and path. When a valid

solution is found, i.e. reaching 'G' with all targets visited, that

path is stored as the best candidate. After all possibilities have

been explored, the solution is visualized using the

print_solution function, which displays the stage along

with the sequence of the player's steps in solving the puzzle.

This approach demonstrates how strong and selective

constraint functions can maintain the accuracy and efficiency

of the backtracking algorithm.

C. Testing Result and Analysis

After the backtracking algorithm was successfully
implemented, testing was conducted on three puzzle
configurations corresponding to the three stages in the
Sootopolis City Gym. Each stage presents an increasing level
of difficulty, with stage structures varying from small to large
in size. The following are the solutions produced by the
algorithm for each puzzle:

Figure 5. Execution result of puzzle 1

Source: Author’s document

Figure 6. Execution result of puzzle 2

Source: Author’s document

Figure 7. Execution result of puzzle 3

Source: Author’s document

The testing results show that the backtracking approach,
optimized with pruning, is capable of solving the puzzles
across different level of difficulty, including the large-sized
stage. All three stages of the puzzle were successfully
completed in a relatively short execution time, showing the
algorithm’s correctness and its ability to traverse the search
space efficiently under pruning constraints.

However, although the backtracking algorithm successfully
solved all three puzzles in a relatively short time, the results
indicate that the number of visited nodes (explored states) for
more complex puzzles (such as Puzzle 3, with a 4 × 11 board)
was quite high, reaching 923 nodes. This is due to the
exponential nature of the backtracking algorithm, with a time
complexity of O(bd), where b is the branching factor and d is
the depth of the solution. This means as the stage size and
solution depth increase, the number of states to explore grows
rapidly, making the algorithm less scalable despite pruning
optimizations.

To optimize this algorithm, several additional approaches
may be applied. For example, prioritizing tiles with limited
movement options (only 1–2 directions) early in the search can

Makalah IF2211 Strategi Algoritma, Semester II Tahun 2024/2025

help reduce the branching factor. Additionally, the stage could
be divided into smaller zones to be solved individually before
combining them into a complete solution (divide and conquer).
Another potential enhancement is applying a two-way search,
where exploration begins simultaneously from both the start
and goal positions, which may significantly speed up the
pathfinding process.

IV. CONCLUSION

Based on the testing results, it can be concluded that the
backtracking algorithm successfuly solved the Sootopolis City
Gym Puzzle in Pokémon Emerald by exploring all possible
paths while respecting constraints and pruning invalid branches
to focus only on viable solutions. Although it guarantees
finding a valid solution, its exponential complexity becomes a
challenge in larger puzzles, as seen in stage 3 with a significant
increase in visited nodes.

To enhance performance, techniques such as heuristic-
based exploration or divide-and-conquer strategies may be
applied. Overall, this paper demonstrates the effectiveness of
backtracking in solving grid-based puzzles in video games,
although scalability remains a challenge for more complex
cases.

V. SUGGESTION

The author's suggestion for future researchers who wish to
continue this topic is to enhance the backtracking algorithm by
applying specific heuristics, such as prioritizing tiles with
limited movement options early in the search, to reduce the
branching factor. Additionally, a hybrid approach that
combines backtracking with divide-and-conquer algorithms,
such as dividing the stage into smaller zones to be solved
separately and then merging the solutions through two
connecting tiles, could also be a promising strategy. An
alternative improvement that involves a bidirectional search,
where the exploration starts simultaneously from both the
starting point and the goal, could also potentially accelerate the
pathfinding process considerably. This backtracking-based
solution search approach also has potential applications in
other types of puzzles that involve a set of constraints and can
be similarly modeled to find solutions from a set of decisions.

VI. APPENDIX

The GitHub repository for this paper can be accessed at
https://github.com/JethroJNS/Stima_Makalah_13523081.git
and the explanatory video for this paper can be accessed at
https://youtu.be/ZmyhBRjQqyk?si=j3BKzLu9mKDnmWhI

ACKNOWLEDGMENT

The author expresses heartfelt gratitude to our Father in
Heaven, whose boundless grace, wisdom, and strength made
the completion of this paper possible. It was through His divine
guidance and provision that every step of this work was
successfully accomplished. Deep appreciation is also extended
to the esteemed lecturer, Dr. Ir. Rinaldi Munir, M.T., whose
invaluable guidance, encouragement, and support greatly
enhanced the quality of this research. The author further thanks
their family for their unwavering love, prayers, and faith,
which provided strength and encouragement throughout the
making of this paper. Lastly, sincere gratitude goes to friends,
whose fellowship and support enriched this meaningful
experience.

REFERENCES

[1] Munir, R., & Maulidevi, N. U. 2025. “Breadth/Depth First Search

(BFS/DFS) (Bagian 1)”.
https://informatika.stei.itb.ac.id/~rinaldi.munir/Stmik/2024-2025/13-

BFS-DFS-(2025)-Bagian1.pdf (accessed on 22nd June 2025).

[2] Munir, Rinaldi. 2025. “Algoritma Runut-balik (Backtracking) (Bagian
1)”. https://informatika.stei.itb.ac.id/~rinaldi.munir/Stmik/2024-

2025/15-Algoritma-backtracking-(2025)-Bagian1.pdf (accessed on

22nd June 2025).
[3] Munir, Rinaldi. 2025. “Algoritma Runut-balik (Backtracking) (Bagian

2)”. https://informatika.stei.itb.ac.id/~rinaldi.munir/Stmik/2024-

2025/16-Algoritma-backtracking-(2025)-Bagian2.pdf (accessed on
22nd June 2025).

[4] Cormen, T. H., Leiserson, C. E., Rivest, R. L., & Stein, C. 2009.

Introduction to Algorithms (3rd ed.). MIT Press.
[5] Levitin, A. 2011. Introduction to the Design and Analysis of Algorithms,

3rd ed. Addison-Wesley.

STATEMENT

I hereby declare that this paper is my own writing, not an

adaptation, or translation of someone else's paper, and not

plagiarized.

Bandung, 22nd June 2025

Jethro Jens Norbert Simatupang

13523081

https://github.com/JethroJNS/Stima_Makalah_13523081.git
https://youtu.be/ZmyhBRjQqyk?si=j3BKzLu9mKDnmWhI

